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Abstract

A liquid and vapour flow model coupled to a thermal model is presented for a flat plate heat pipe with micro-grooves. This model
allows the calculation of the liquid and vapour pressures and velocities, the meniscus curvature radius in the grooves and the temperature
field in the heat pipe wall from the heat source to the heat sink. The meniscus curvature radius is introduced in the thermal model to take
into account the heat transfer at the liquid–vapour interface. Experimental measurements of the meniscus curvature radius as well as
temperature measurements along a grooved heat pipe are compared to the model results. Both comparisons show the good ability of
the numerical model to predict the maximum heat transport capability and the temperature field in the heat pipe. The model is used
to optimize the heat pipe dimensions in order to improve its thermal performances.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Flat plate heat pipes are micro-fluidic devices that are
usually designed for the thermal management of electronic
components [1]. They are used for their heat transport
capacity as well as their high level of uniform temperature
distribution. This is the reason why these cooling devices
are also qualified of two-phase heat spreader (TPHS).

Recently, Rullière et al. [2,3] have tested a micro-grooved
TPHS for the cooling of proton exchange membrane fuel
cells (PEMFC). This application aims at reducing the cool-
ing system volume and homogenizing the temperature in the
core of fuel cells, where the working temperatures range
between 60 �C and 100 �C. The heat production inside the
PEMFC is about 0.5 W cm�2 and has to be removed from
important areas (200–1000 cm2). Unlike classical TPHS
applications, PEMFC cooling involves a big heat source, a
small heat sink and a small adiabatic region. Rullière et al.
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[2,3] have tested such a copper flat TPHS with a wide evap-
orating area (190 � 90 mm2) compared to the condenser
area (30 � 90 mm2). The experimental results show that
TPHS are very efficient systems for PEMFC cooling. In
both vertical favourable orientation and horizontal orienta-
tion, the temperature difference is lower than 1.6 K on the
entire evaporator surface area for a heat transfer rate equal
to 85 W (0.5 W cm�2) and a working temperature of 70 �C.

In horizontal orientation, a confocal microscope was
used to measure the meniscus curvature radius along the
grooves when the liquid motion is due to capillary forces
rather than to volume forces. A two-phase flow model
was developed to calculate the meniscus curvature radius,
the liquid and vapour pressures and the liquid and vapour
velocities along the TPHS. The comparison between the
experimental data and the model results shows the good
ability of the numerical model to predict the meniscus cur-
vature radii from which the maximum heat transport capa-
bility of the TPHS is depending.

A hydrodynamic model allows calculating the capil-
lary heat transport limitation but is not sufficient to

mailto:frederic.lefevre@insa-lyon.fr


Nomenclature

a accommodation coefficient
A cross-section area (m2)
c aspect ratio
f friction coefficient
g gravitational acceleration (m s�2)
h heat transfer coefficient (W m�2 K�1)
H height (m)
hlv latent heat of vaporisation (J kg�1)
i node number
K meniscus curvature (m�1)
l width (m)
L length (m)
M mass per mole (kg mol�1)
n total node number
P pressure (Pa)
Po Poiseuille number
q heat flux (W m�2)
Q heat transfer rate for a control volume (W)
r meniscus curvature radius (m)
R thermal resistance (K W�1)
R ideal gas constant (J K�1 mol�1)
Re Reynolds number
S surface area (m2)
T temperature (K)
T0 temperature at y = Hw + Hg + Hv/2 (K)
u velocity along the z-axis (m s�1)
v velocity along the y-axis (m s�1)
w velocity along the x-axis (m s�1)
x, y, z coordinates (m)

Greek symbols

a angle (rad)
d film thickness (m)
d0 film thickness derivative
u transversal heat flux (W m�2)
k thermal conductivity (W m�1 K�1)
l dynamic viscosity (Pa s)
q density (kg m�3)
h contact angle (rad)
r surface tension (N m�1)
s shear stress (N m�2)

Subscripts

cond condenser
evap evaporator
f fin
f + g fin + groove
g groove
hs heat sink
i node number
int interfacial
l liquid
long longitudinal
max maximum
min minimum
sat saturation
trans transversal
v vapour
w wall
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characterize the thermal performances of a TPHS. The
effective thermal conductivity must also be investigated to
determine the relationship between the temperature field
and the input power. Therefore, a thermal model has to
be developed to calculate the temperature field and the
thermal resistance of the device.

Several authors have developed both hydrodynamic and
thermal models of grooved TPHS [4–7]. In [4], an analyti-
cal solution for the liquid and the vapour flows coupled to
an analytical solution for the wall temperature was pre-
sented. This model can be used when several heat sources
and heat sinks are located on a flat heat pipe and for differ-
ent capillary structures such as meshes or sintered powder
wick. Nevertheless, the permeability and the equivalent
thermal conductivity of the capillary structure are consid-
ered to be constant, which is not well adapted to grooves.
Indeed, the variation of the liquid thickness that occurs
along the grooves affects the liquid film resistance and the
cross-section of both the vapour and the liquid flows.

The hydrodynamic models developed in [5–7] are based
on the balance equations and the Young Laplace law. The
flow equations are coupled to thermal models of the evap-
orator and the condenser. In [5,6], 1D thermal models were
developed. Jiao et al. [7] developed a 2D approach and put
forward the influence of the contact angle, the groove con-
figuration and the film condensation on the temperature
drop from the heat source to the heat sink. The evaporator
model includes the effect of the evaporating thin film region
[8]. However, axial heat conduction in the wall is not taken
into account, whereas it could affect TPHS thermal perfor-
mances [4], mainly when the adiabatic area is very small.

In the present work, a thermal model is developed and
coupled to the hydrodynamic model already presented in
[2]. The liquid and vapour pressures and velocities, the
meniscus curvature radius in the grooves and the tempera-
ture field in the TPHS wall are calculated from the heat
source to the heat sink. The meniscus curvature radius, cal-
culated in the two-phase flow model, is taken into account
to model the heat transfer by heat conduction and phase
change inside the TPHS. The thermal and the hydrody-
namic models are validated with both temperature and
meniscus curvature radius measurements. Several works
have already shown the influence of the meniscus curvature
radius on the temperature field along a grooved heat pipe.
However, it was only validated experimentally by tempera-
ture measurements. The scoop of the present investigation
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is to associate local temperature measurements to measure-
ments of the meniscus curvature radius in the grooves. The
validated model is then used to find the optimal dimensions
of the TPHS.
Hg

lf+g/2

Hv/2

r

Lvw

Lint
Llw

Fig. 2. Transversal cross-section of a control volume; (a) Geometrical
parameters and (b) Vapour-wall and liquid-wall wetted lengths and
liquid–vapour interfacial length.
2. Capillary two-phase flow model

The TPHS under investigation is presented in Fig. 1. It
consists of a long grooved plate with a single flat vapour
channel. The grooves, whose cross-section is rectangular
of height Hg and width lg, are separated by fins of width
lf. The wall thickness under the grooves is Hw and the
vapour space height Hv. The axial coordinate z is equal
to zero at the evaporator beginning and to L at the con-
denser end. The evaporation and condensation lengths
are longer than the heat source and heat sink lengths,
respectively, due to heat conduction in the wall. The trans-
versal coordinate y is equal to zero at the middle of the
TPHS. The heat sources and the heat sinks, placed each
one at an extremity of the TPHS, are separated by a short
adiabatic area. They are located on both the TPHS top and
base and occupy all the TPHS width. Thus, the configura-
tion is symmetrical in height and in width and it is possible
to take into account only half a groove, half a fin and half a
vapour space to model the TPHS. The model can be
applied to any type of grooves with cross-sections such as
trapezoidal or triangular.

The capillary two-phase flow model is one-dimensional
and steady-state. It is based on previous works on micro-
heat pipes arrays [9–11] and was modified for TPHS. The
liquid and vapour pressures, the liquid and vapour veloci-
ties and the meniscus radius are calculated all along a
groove. The model also predicts the capillary limit. The
equations, already presented in [2], have been modified to
be coupled to the thermal model.
2.1. One-dimensional two-phase flow model

The TPHS is divided into several control volumes of
length dz, height (Hv/2 + Hg) (Fig. 2) and width lf + g/2
(lf + g = lf + lg) for which the balance equations are written
Adiabatic section

A

A

Heat source

CondensationEvaporation

Heat sink

y Hg + Hw

z = 0

Fig. 1. Schematic of a TPHS
for the liquid and vapour phases. For the liquid and
vapour mass balance, we obtain

dðAlulÞ
dz

dz ¼ Lintmint dz ð1Þ

dðAvuvÞ
dz

dz ¼ ql

qv

Lintmint dz ð2Þ

where subscripts l and v denote the liquid and the vapour,
respectively. A is the cross-section, Lint is the liquid–vapour
interfacial length, z is the axial coordinate, u is the fluid
velocity and q its density. The interfacial velocity of con-
densation or evaporation vint is calculated from the energy
balance

mint ¼ �
uðzÞ lfþg

2

qlhlvLint

ð3Þ

where u(z) is the transversal heat flux, calculated with the
thermal model and hlv is the latent heat of vaporisation.
Two additional equations are obtained from the momen-
tum balance equations

ql

dðAlu2
l Þ

dz
dz ¼ �Al

dP l

dz
dzþ dAl

dz
ðP v � P lÞdzþ jslwjLlw dz

þ jsintjLint dz� qlgAl sin adz ð4Þ
z

 z = L

A-A
lg

lf

Hg

Hv

Hw

y

x

 + Hv/2

 y = 0

Control
volume

FinsGrooves
Vapour channel

with rectangular grooves.
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Fig. 3. The thermal node network.
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qv

dðAvu2
vÞ

dz
dz ¼ �Av

dP v

dz
dzþ dAv

dz
ðP l � P vÞdz

þ jsvwjLvw dzþ jsintjLint dz� qvgAv sin adz

ð5Þ

where P is the pressure, slw and svw the liquid-wall and va-
pour-wall shear stresses and sint is the interfacial shear
stress. Lvw and Llw are the vapour-wall and liquid-wall wet-
ted lengths in the control volume, respectively. The last
term in Eqs. (4) and (5) is due to the body forces, a being
the TPHS tilt angle in relation to the gravity field g.

The wall shear stresses are calculated by assuming liquid
and vapour laminar flows

s ¼ 1

2
qu2f with f ¼ Po

Re
ð6Þ

where f is the friction coefficient, Po the Poiseuille number
and Re the Reynolds number. For a rectangular groove,
the Poiseuille number can be calculated using the Shah
and London law [12] for the liquid and the vapour

Po ¼ 24 1� 1:3553cmin þ 1:9467c2
min � 1:7012c3

min

�
þ 0:9564c4

min � 0:2537c5
min

�
ð7Þ

where cmin is the minimum aspect ratio between the height
and the width of the cross-section. The interfacial shear
stress is a parameter that is difficult to estimate. Some
authors have developed expressions to cope with this
parameter [13,14]. In [2], the model has been validated with
experimental data obtained with a TPHS having a very
small adiabatic area and it has been shown that, when
phase change phenomena occur nearly all along the
grooves, the interfacial shear stress is negligible.

In Eqs. (1)–(5), Al, Av, Lvw, Llw, and Lint depend on the
groove geometry and on the meniscus curvature radius r,
which is calculated by deriving the Laplace–Young equa-
tion with respect to z

dP l

dz
¼ dP v

dz
� d

dz
r
r

� �
ð8Þ

where r is the surface tension.

2.2. Boundary conditions

Eqs. (1)–(5) and (8) form a set of six equations, includ-
ing five coupled differential equations. The resulting set of
first order, non-linear, coupled ordinary differential equa-
tions is solved numerically with a fourth order Runge–
Kutta method using the following boundary conditions:

uljz¼L ¼ uvjz¼L ¼ 0

P ljz¼L ¼ P sat �
r

rjz¼L

P vjz¼L ¼ P sat
ð9Þ

where L is the groove length and Psat is the saturation
pressure.

The value of rjz=L depends on the heat transfer rate and
on the fluid fill charge. When the TPHS does not work, the
meniscus curvature radius is constant all along a groove
and equal to r0. In operating conditions, it decreases or
increases in the evaporator and condenser zones due to
evaporation or condensation, respectively. It is assumed
that in operating conditions r remains constant at the coor-
dinate z0 corresponding to the section where no phase
change occurs. The value of rjz=L is obtained when the cal-
culated meniscus curvature radius is equal to r0 at z = z0

through a shooting method on parameter r.
The maximum heat transfer rate Qmax is obtained when

the meniscus curvature radius reaches the minimum value
rmin [12] at z = 0

rmin ¼
lg

2 cos h
ð10Þ

where lg is the groove width and h the contact angle be-
tween the meniscus and the wall.

In this model, we consider only the case were the line of
contact is at the upper edge of the corner of the fin in the
evaporator. The meniscus recession from the top to the
bottom of the groove in the evaporator section that occurs
before the dry out of the evaporator, is not taken into
account here.
3. The nodal thermal model

The TPHS wall is divided into several control volumes
for which the energy balance equation is written. The wall
temperature Ti is calculated in each control volume i

(Fig. 3). At z = 0 and z = L, the heat flux is assumed to
be equal to zero in the axial direction. The boundary con-
ditions at y = Hw + Hg + Hv/2 are expressed as

– an uniform heat transfer rate imposed on the TPHS wall
in the heat source surface area;

– a zero heat flux in the adiabatic section;
– a Fourier boundary condition in the heat sink surface

area.

For a control volume, three thermal resistances are con-
sidered to model heat transfer in the TPHS.

A transversal thermal resistance, Ri,trans is used to model
heat transfer by heat conduction and phase change in the y
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direction at node i. This thermal resistance changes at each
node i, which is due to the variation of the meniscus curva-
ture radius along z and to the phase change (condensation
or evaporation) that occurs in the considered control vol-
ume. The transversal thermal resistance calculation is
described in Section 3.2 for the evaporator and in Section
3.3 for the condenser. The vapour temperature is assumed
to be equal to the saturation temperature Tsat all along a
groove.

Rhs and Ths are the convective thermal resistance and the
temperature of the heat sink, respectively. Rhs is calculated
by considering the convective heat transfer coefficient of
the heat sink hhs. Rlong is the longitudinal thermal resis-
tance of the wall, which is constant all along the grooves.

By writing the energy balance, we obtain the following
equations at node i:

Heat source section

T i�1 þ T iþ1

Rlong

� T i
2

Rlong

þ 1

Ri;trans

� �
þ T sat

Ri;trans

þ Q ¼ 0

Adiabatic section

T i�1 þ T iþ1

Rlong

� T i
2

Rlong

þ 1

Ri;trans

� �
þ T sat

Ri;trans

¼ 0

Heat sink section

T i�1 þ T iþ1

Rlong

� T i
2

Rlong

þ 1

Ri;trans

þ 1

Rhs

� �
þ T sat

Ri;trans

þ T hs

Rhs

¼ 0

ð11Þ

Q is the heat transfer rate imposed on the TPHS wall for
one control volume in contact with the heat source. By tak-
ing into account the n nodes, we obtain a set of n equations
and n + 1 unknowns: the temperature at each node and
Tsat. The set of equations makes a tridiagonal matrix,
which is solved readily. Tsat is calculated through an itera-
tive process, until the evaporating heat transfer rate is
equal to the condensing heat transfer rate.

The transversal heat flux u(z) that is used in the hydro-
dynamic model is expressed as

uðzÞ ¼ uðiÞ ¼ ðT i � T satÞ
Ri;trans

lfþg

2
dz

ð12Þ
 y = Hw+ Hg+Hv/2

y
x

λw

λl

Q

wall

finliquid

hevap

Fig. 4. Boundary conditions of a control volume in the evaporator model.
3.1. The longitudinal thermal resistance

A longitudinal thermal resistance, Rlong allows the heat
transfer calculation through the wall in the z direction

Rlong ¼
dz

kwAw

; Aw ¼ Hwlfþg þ H glf ð13Þ

where kw is the wall thermal conductivity and Aw is the wall
cross-section in the z direction. The heat conduction in the
liquid in the z direction is neglected because the thermal
conductivity of the liquid kl is much lower than kw. Indeed,
the usual materials for TPHS are copper, aluminium or sil-
icon, which have high thermal conductivities. Thus, Rlong is
constant all along a groove.

3.2. The evaporator 2D thermal model

In the evaporator section, defined by a wall temperature
greater than Tsat, the transversal thermal resistance at node
i, Ri,trans is calculated using a 2D thermal model (Fig. 4). A
constant heat transfer rate Q is applied at y = Hw + Hg +
Hv/2. At the fin top the heat flux is assumed to be equal
to zero, because the convection heat transfer between the
wall and the vapour is negligible compared to the evapora-
tion heat transfer. The heat transfer is equal to zero on the
vertical boundaries of the control volume because of the
symmetries. As the liquid thickness and the liquid velocity
are small, liquid convection is neglected in the grooves and
heat transfer in the liquid is modelled by 2D heat conduc-
tion. At the liquid–vapour interface a Fourier condition is
used to model the evaporation with a heat transfer coeffi-
cient hevap calculated from the gas kinetic theory [15]

hevap ¼
2a

2� a
qvh2

lv

T sat

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p R

M
T sat

q 1� P sat

2qvhlv

� �
ð14Þ

where a is the accommodation coefficient, R the ideal gas
constant and M the molar mass of the fluid.

The 2D model is solved using the Matlab finite element
toolbox for a control volume of the evaporator. The ther-
mal resistance Ri,trans is calculated by considering the differ-
ence between the saturation temperature and the calculated
wall temperature at y = Hw + Hg + Hv/2, which is almost
uniform. Ri,trans does not depend on the value of the heat
transfer rate Q applied at y = Hw + Hg + Hv/2 because
the thermal problem is linear.

Jiao et al. [7] developed two models to calculate the heat
transfer in the evaporator. The first model is 1D and takes
into account the heat transfer in the thin film region at the
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junction between the meniscus and the wall. In this region,
the interface temperature cannot be assumed to be equal to
the saturation temperature [16] and the shape of the liquid–
vapour interface is different from the meniscus curvature
radius. In the second model, the 2D heat conduction equa-
tion is solved in the liquid and the wall to calculate the heat
transfer in the macro region assuming a constant tempera-
ture of the liquid–vapour interface. In the present model, a
heat transfer at the liquid vapour interface is introduced in
the 2D model to take into account the effect of the interface
thermal resistance that acts mainly in the thin film region.

3.3. The condenser 2D thermal model

The condenser model is solved for the nodes where the
wall temperature is lower than Tsat. Heat transfer by con-
densation occurs mainly on the fin top rather than in the
grooves because the thermal resistance of the fins is much
lower than the thermal resistance of the liquid. Indeed,
the fins are generally made of a high thermal conductivity
material, which is about 100 to 1000 times higher than
the liquid thermal conductivity. Thus, a liquid film overlays
the fin top. Depending on its thickness, the condensing film
thermal resistance is not negligible and can be higher than
the wall resistance. Thus, a hydrodynamic model has been
developed to calculate the liquid film thickness and its ther-
mal resistance.

3.3.1. The hydrodynamic model for the liquid film thickness

calculation on the fin top
Jiao et al. [7] developed a hydrodynamic model to calcu-

late the liquid film thickness on the fin by assuming it con-
stant along the x-axis (Fig. 5). In the present investigation,
a steady-state one-dimensional model is developed to cal-
culate the liquid film thickness d, the liquid pressure Pl

and the liquid velocity wl in the film, along the x-axis. This
model has been adapted from a previous work developed
to characterize thin evaporating films [16]. Owing to the
symmetries, only one half of the fin is modelled.
wl(x)

δ (x)

x = 0 x = lf /2 x

r(z)

0
2

2
=

dx

d δ

y

ϕ(z)lf+g/lf

δ 0

0=
dx

dδ
Pv(z)

finliquid

Fig. 5. Schematic of the hydrodynamic model for the condensing film
thickness calculation.
The film is divided in several control volumes of length
dx for which the balance equations are written. The vapour
pressure is supposed to be constant all along the x-axis and
equal to Pv(z). The heat flux transferred to the heat sink is
equal to u(z)lf + g dz/2, where u(z) is calculated in the ther-
mal model (Eq. (12)). Let us assume that the vapour con-
densation is negligible in the grooves. Thus, the heat flux
at the fin top is equal to u(z)lf + g/lf and the mass balance
for the liquid is expressed as

dðdwlÞ
dx

dzdx ¼ � 1

qlhlv

uðzÞ lfþg

lf

dzdx ð15Þ

By neglecting the liquid–vapour interfacial stress, the
momentum equation is the following:

ql

dðdw2
l Þ

dx
dzdx ¼ �d

dP l

dx
dzdxþ slw dzdx ð16Þ

where slw is calculated by Eq. (6), with a hydraulic diameter
for the Reynolds number equal to 2d.

Let us introduce K the liquid film curvature

K ¼
d2d
dx2

1þ dd
dx

� �2
� �3=2

ð17Þ

The derivative of d with respect to x is

dd
dx
¼ d0 ð18Þ

By introducing Eq. (18) in Eq. (17), we obtain a first order
differential equation

dd0

dx
¼ Kð1þ ðd0Þ2Þ3=2 ð19Þ

Owing to the Young–Laplace law, the liquid pressure on
the fin top is higher than the vapour pressure

P l � P v ¼ rK ð20Þ
By introducing Eq. (20) in Eq. (19), we obtain

dd0

dx
¼ P l � P v

r
ð1þ ðd0Þ2Þ3=2 ð21Þ

Eqs. (15), (16), (18) and (21) make a set of four coupled
first order differential equations that is solved numerically
with a fourth order Runge–Kutta method.

For the boundary conditions, we assume that the menis-
cus curvature radius r(z) is constant in a groove. Near the
fin top, the liquid height is equal to d0 corresponding to the
draining of the liquid from the fins to the groove. d0 is the
boundary value of d at x = 0.

In the (x,y) coordinate system, the meniscus belongs to

the circle of centre � lg

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � l2

g

4

q
þ d0

� �
and radius r(z).

The equation of the liquid thickness in a groove can be cal-
culated through the circle equation with y = Hg � d

xþ lg

2

� �2

þ H g � d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �

l2
g

4

s
� d0

0
@

1
A

2

¼ r2 ð22Þ
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By deriving the equation of d with respect to x at x = 0,
we obtain the boundary value for d0

d0ð0Þ ¼ lgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2ðzÞ � l2

g

q ð23Þ

The energy balance gives the value of the liquid velocity
at x = 0

wlð0Þ ¼
uðzÞ lfþg

2

qlhlvd0

ð24Þ

As the meniscus curvatures of the groove and the top fin
are in opposite signs, the function d(x) has an inflexion
point. This inflexion point was found experimentally to
be located at the edge of the fin. Thus, at x = 0, the menis-
cus curvature is equal to zero and the liquid pressure
boundary condition is

P lð0Þ ¼ P vðzÞ ð25Þ
As the value of d0 is unknown, a shooting method on

parameter d is used to calculate it. The value of d0 is
obtained when the derivative of d with respect to x is equal
to zero on the fin symmetry axis at x = lf/2.

3.3.2. Condenser 2D thermal model

Once the film thickness is known, the transversal ther-
mal resistance at node i is calculated using a 2D thermal
model (Fig. 6). A constant heat transfer rate Q is consid-
ered at y=Hw + Hg + Hv/2. For the calculation of the con-
densation heat transfer coefficient, as the physical
mechanisms are similar to those of evaporation, Eq. (14)
is used to calculate the heat transfer coefficient hcond at
the liquid–vapour interface.

The 2D model is solved using the Matlab finite element
toolbox. The resulting temperature field is used to calculate
the thermal resistance Ri,trans.
Q

λl

Tsat

λw

y
x

 y = Hw+ Hg+Hv/2

 y = Hv/2

liquid fin

hcond

Fig. 6. Boundary conditions for a control volume of the condenser 2D
model.
3.4. The hydrodynamic and thermal model coupling

The hydrodynamic and thermal models are coupled and
solved in an iterative way (Fig. 7). The value of Q, Ths and
Rhs are known, as well as the heat source and heat sink sur-
face areas. The saturation temperature is initialised at Ths.

Knowing Tsat and u(z), the liquid and vapour velocities,
the liquid and vapour pressures and the meniscus curvature
radius are determined by the hydrodynamic model. Tsat,
u(z), r(z) and Pv(z) allow the transversal thermal resistance
calculation with the evaporator and condenser models.
Ri,trans and Tsat allow the calculation of the wall tempera-
ture and the transversal heat flux with the nodal thermal
model. The nodal thermal model is solved several times
by increasing or decreasing the saturation temperature
until the total transversal heat transfer rate from the evap-
orator beginning to the condenser end is equal to zero. The
new saturation temperature and transversal heat flux are
used to solve the hydrodynamic model again. The iterative
procedure is stopped when the maximum temperature dif-
ference between two iterations is lower than 0.05 K.

4. Validation with experimental data

In this section, a comparison between the model results
and the experimental data presented in [2] is described. The
TPHS is a long grooved TPHS with rectangular channels,
similar to the one presented in Fig. 1. It is grooved only
on its lower face, the upper face being sealed with a boro-
silicate glass plate, which allows the liquid/vapour menis-
cus observation in the grooves. A confocal microscope is
used to locate the meniscus and to measure its curvature
radius in the grooves, the TPHS being in horizontal orien-
tation. The measurements are averaged over ten grooves
located at a same z position to calculate the meniscus cur-
vature radius. The average standard deviation of these
measurements is about 50 lm.

The application of the TPHS is the cooling of proton
exchange membrane fuel cells (PEMFC). Unlike classical
TPHS applications, in which the heat source is small com-
pared to the adiabatic and the heat sink regions, PEMFC
cooling involves a big heat source, a small heat sink and
a small adiabatic region.

4.1. Experimental set-up

The TPHS is made of 109 longitudinal micro-grooves,
machined in a copper plate of area 230 � 90 mm2. The geo-
metrical characteristics of the grooves are presented in
Table 1.

The heat source is a thick resistor film of dimensions
190 � 90 mm2 located on the copper wall. The heat sink
is a water heat exchanger of dimensions 30 � 90 mm2.
The heat source and the heat sink are separated by a short
adiabatic area of length equal to 10 mm. Two series of
seven thermistors are located symmetrically along the
TPHS wall and their values are averaged in each section.
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Table 1
TPHS characteristics

Hr Hv/2 Hw lf lg L

380 lm 1.6 mm 2 mm 400 lm 400 lm 230 mm
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Fig. 8. Measured and calculated meniscus curvature radii along the TPHS
(Tsat = 70 �C).
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The TPHS is filled with methanol. The fluid load is lightly
higher than the volume of the grooves, but the excess of
fluid has no significant impact on the temperature field.
Indeed, it remains in the corners of the condenser without
flooding it.

4.2. Validation with experimental data

For the TPHS in horizontal orientation, the meniscus
curvature radii have been measured all along the grooves
with a confocal microscope [2]. The experimental curvature
radii for imposed heat fluxes on the TPHS wall q equal to
0.5 W cm�2, 0.7 W cm�2 and 0.9 W cm�2 (85.5 W, 119.7 W
and 153.9 W) are shown in Fig. 8. The saturation temper-
ature is equal to 70 �C. Dashed, solid and point dashed
lines correspond to calculated radii for each heat flux,
respectively. The comparison between the experimental
and the calculated meniscus curvature radii shows a good
agreement in the evaporator section. The difference
between the measured and the calculated radii is in the
range of the measurement error. In the condenser section,
the difference between the experimental and the calculated
results is more important. However, it has to be noticed
that, in the condenser section, a small increase in the pres-
sure difference between the liquid and the vapour leads to a
high variation of the meniscus curvature radius due to the
Young–Laplace law. Indeed, the more the meniscus curva-
ture is large and the more it is sensitive to pressure varia-
tions. Thus, in the condenser, a small under-estimation or
overestimation of the pressure drop leads to an important
error on the meniscus curvature radius calculation.
When the TPHS does not work, the measured meniscus
curvature radius is equal to 850 lm all along the grooves.
This value is supposed to be constant at z0 = 187 mm (z/
L = 0.81), which corresponds to the location where the cal-
culated heat flux is equal to zero (Fig. 9). The area of con-
densation is larger than the heat sink area due to heat
conduction in the wall.

Fig. 10 shows the comparison between the calculated and
the measured temperatures along the TPHS for heat fluxes
equal to 0.5 W cm�2, 0.7 W cm�2 and 0.9 W cm�2. The
experimental results fit well the calculated temperatures.
The temperature profile is very homogeneous on the whole
evaporator area. The temperature gradients are higher in
the condenser than in the evaporator, which is mainly due
to a condenser area lower than the evaporator area for a
same heat transfer rate. The value of the accommodation
coefficient used for the calculation of the evaporation and
condensation heat transfer coefficients is equal to 0.13
[17]. It leads to evaporation and condensation coefficients
equal to 400 kW m�2 K�1 for Tsat = 70 �C. The influence
of this parameter on the results is discussed later.
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F. Lefèvre et al. / International Journal of Heat and Mass Transfer 51 (2008) 4083–4094 4091
Fig. 11 shows heat flux vectors in a control volume
located at the beginning of the evaporation area (z/
L = 0). The transversal heat flux is transferred by conduc-
tion in the wall under the grooves. The most part of the
heat flux is then transferred through the fins, until the junc-
1

2

3

4

5

7

8

9

6

10

12

11

0
0 200 400 600 800

0

0.5

1

1.5

2

2.5

 x (µ

q(W cm-2)

m)

 y
 (

m
m

)

Fig. 11. Heat flux vectors in the evaporation area (q = 0.5 W cm�2,
r = 0.4 mm).
tion of the meniscus with the wall where evaporation
occurs. In the thin film region, the heat flux reaches
12 W cm�2 for an imposed heat flux equal to 0.5 W cm�2

on the outer TPHS wall.
Fig. 12a and b shows heat flux vectors in a control vol-

ume located at the beginning (z/L = 0.82) and at the end
(z/L = 0.98) of the condensation area, respectively. The
heat flux transferred through the liquid in the grooves is
very small. Condensation occurs mainly on the top of the
fins. In the fin corner, at the junction between the meniscus
curvature in the groove and the liquid film on the fin, the
liquid film thickness is very small (about 1–5 lm). Thus,
the heat flux transferred in this region is high. It reaches
3 W cm�2 at z/L = 0.82 and 2 W cm�2 at z/L = 0.98.

Fig. 13 shows the meniscus curvature radius and the
liquid film thickness for different locations in the condenser
(z/L = 0.82, 0.86, 0.9, 0.94, and 0.98). The liquid film thick-
ness in the fin corner increases with the increase of the
meniscus curvature radius. Therefore, the transversal ther-
mal resistance is smaller at the beginning than at the end of
the condenser.

Fig. 14 shows the transversal thermal resistance (by con-
trol volume) all along the TPHS. In the evaporation area,
the most part of the heat flux is transferred at the junction
of the meniscus with the fin. An increase of r leads to an
increase of the liquid film thickness in this zone. Therefore,
the total transversal thermal resistance increases with z. As
a result, the calculated maximum temperature is obtained
at z/L = 0.7 (Fig. 10). The discontinuity observed at z/
L � 0.8 is due to the difference between evaporation and
condensation mechanisms. Fig. 14 shows also that the
transversal thermal resistance decreases with the increase
of q in the evaporator area and increases with the increase
of q in the condenser area. This can be explained by the
meniscus curvature radius variation from the evaporator
to the condenser.

4.3. Influence of the accommodation coefficient

Fig. 15 shows the temperatures along the TPHS for dif-
ferent accommodation coefficients (q = 0.5 W cm�2). This
coefficient has not a significant influence on the tempera-
ture profile shape all along the evaporator. Nevertheless,
it has a strong influence on the maximal temperature differ-
ence between the evaporator and the condenser, which
increases with the decrease of a. The value of a used in
the model (a = 0.13), experimentally determined by Maere-
fat et al. [17], leads to a good agreement between the model
and our experimental results.

5. Determination of the TPHS optimal dimensions

The model has been validated with both tempera-
ture measurements and meniscus curvature radius
measurements. In this part, it is used to optimize the
dimensions of the TPHS. The aim is to obtain the maxi-
mum heat transfer rate with a low thermal resistance.
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The maximum heat transfer rate is obtained when the
meniscus curvature radius reaches a minimum value, rmin,
at z/L = 0 (Eq. (10)). It has been shown experimentally that
the maximum heat transport capability, qmax is equal to
0.9 W cm�2 for Tsat equal to 70 �C and rmin equal to
257 lm (Fig. 8). The corresponding contact angle h, equal
to 39�, is supposed to remain constant to calculate rmin

when the groove width changes.
In this study, the TPHS length, width and height are

constant as well as the internal height Hv + 2 Hg. The
aim is to find the optimal dimensions of the grooves and
of the vapour space. In this work, we consider only rectan-
gular grooves. The effect of fin geometry is not taken into
account, but it has to be noticed that this parameter can
have a significant effect on the thin film evaporation and
condensation [7].
5.1. Optimal groove width dimensions

Fig. 16 shows the maximum heat transport capability
versus the groove width for three fin widths: lf = 20 lm,
lf = 100 lm and lf = 400 lm. When lg increases, the liquid
cross-section increases (and thus the liquid flow rate), but
the capillary pressure decreases, due to a higher value of
rmin. These opposite variations lead to an optimal value
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for lg equal to 430 lm, 360 lm and 320 lm for lf equal to
400 lm, 100 lm and 20 lm, respectively. When the fin
width increases, the number of grooves decreases, which
leads to lower performances for the same groove width.

Fig. 17 shows the thermal resistance versus the groove
width for three different fin widths. The thermal resistance
depends on both the number of grooves and the fin width.
Many grooves enable a wide evaporation area and thus a
low thermal resistance. The number of grooves depends
on both lg and lf (Fig. 18). When lg is small, the number
of grooves is high, especially for small fins. As a result,
the lowest thermal resistance is obtained for a small groove
and a small fin. The number of grooves decreases with the
increase of lg and this diminution is higher for small fins
than for large fins. As a result, the slope of the thermal
resistance is higher for small fins than for large ones.
g

Fig. 19. Maximal heat transport capability versus the groove height.
5.2. Optimal heights of the vapour-core and the grooves

In this study, the height of the TPHS is considered to be
constant as well as the wall thickness under the grooves.
Thus, the vapour-core height and the groove height are
linked as follows: Hv/2 + Hg = 1.98 mm.

When Hg increases, the maximal heat flux increases
because the liquid cross-section is larger for a same capil-
lary pressure (Fig. 19). However, it involves the decrease
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Fig. 17. TPHS thermal resistance versus the groove width.
of the vapour-core height and consequently the vapour
pressure drop increases. These two opposite variations lead
to an optimum (qmax = 1.62 W cm�2), which is obtained
for Hv/2 = 1280 lm and Hg = 700 lm. It has to be noticed
that the variation of the groove height has a low influence
on the thermal resistance. Indeed the fin thermal resistance
is low compared to the total transversal thermal resistance.
This study shows that the groove height is an important
parameter that needs to be optimize to obtain a high max-
imum heat transport capability.
6. Conclusion

A hydrodynamic model for both the liquid and the
vapour phases inside a micro-grooved TPHS coupled to a
thermal model taking into account heat conduction inside
the TPHS wall has been developed. These models allow
the calculation of the heat transport capability of the TPHS
and the temperature field in its wall. A condenser thermal
model and an evaporator thermal model based on the
meniscus curvature radii calculated in the hydrodynamic
model have been developed to take into account the heat
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transfer by phase change inside the TPHS. For the con-
denser, a hydrodynamic model allows the calculation of
the condensation film thickness on the fins between the
grooves.

The model has been validated with experimental data.
Both meniscus curvature measurements and temperature
measurements are compared to the numerical results. A
good agreement has been found between the experimental
data and the numerical results.

A parameter study has been realised to optimize the TPHS
dimensions (lg = 360 lm, lf = 100 lm, Hv/2 = 1280 lm and
Hg = 700 lm). With these dimensions, the maximal heat flux
is equal to 2 W cm�2 and the thermal resistance to
0.035 K W�1 for Tsat = 70 �C.
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